

KringleCon 2018 Walkthrough
By: Akvile Kiskis

KringleCon is a free, online security
conference hosted by SANS. In addition
to the conference, there is a Holiday
Hack Challenge that correlates with the
talks given at the conference. You can
create a character once you login and
actually navigate throughout Santa’s
castle to complete all of the activities
(see screenshot below).

I originally started the challenge on the day it opened, but the
server was so overloaded, I kept getting kicked out. I only
managed to complete the first challenge before getting irritated
with the disconnects. I figured I would just wait until it died
down and then somehow January 13th rolled around (they ask us to
submit our write ups for a contest on the 14th) and I still had
nothing done. Long story short, I marathoned as much as I could
on that Sunday and part of Monday to meet the deadline. (Don’t

https://www.sans.org/

do what I did.) Please, actually take the time to enjoy the
conference and the awesomeness of what they created.
At this present moment, I have 7 challenges done, but if the
servers stay open, I’ll keep working on them and updating this
write up.

Proof that I’m not just some shmuck who says they did this

Since this was a hefty list of objectives, I created a table of
contents in case if anyone wants to look at certain objectives
and not have to scroll on forever. That’s also why I made this
write up on a Google doc instead of directly on to my website.

Table of Contents

1) Orientation Challenge

2) Directory Browsing

3) de Bruijn Sequences

4) Data Repo Analysis

5) AD Privilege Discovery

6) Badge Manipulation

7) HR Incident Response

Note: All of the objectives have an optional elf challenge associated with
it. My understanding is that the elf challenges were there to give you clues
on how to complete the objective at hand. I did not complete all of the elf
challenges, but for the ones I did, I separated each of the objectives into
the elf challenge portion and flag portion so it would be easier to read.

Orientation Challenge

This one was the least technical out of all of them (which makes
sense for an orientation) so I won’t go into this one too much.
Basically, there are several questions that you need to answer
based off of Ed Skoudis’s talk to get the flag. There is also an
intro challenge demonstrating how to use their cranberry pi
terminals that you see next to all of the elves in the castle.
The elf (whose name escapes me) said she was stuck in vim and
didn’t know how to exit, so I had to exit vim to complete the
challenge. This is as simple as entering :q! which is the command
to exit vim without saving. Trust me, the rest of the challenges
aren’t this easy.

https://www.youtube.com/watch?v=31JsKzsbFUo
https://www.youtube.com/watch?v=31JsKzsbFUo

Directory Browsing

The purpose of this challenge is to find a csv file hidden
somewhere on this web page to get the flag.

The first screenshot is the page that you’re greeted with and
the second page is what happens when you click “Apply Now”. There
isn’t much wiggle room for anything in terms of navigating
elsewhere. If you look at the URL on the second web page, you
can see that there is a /cfp/ directory. I was curious to see
what happened if I navigated here.

Well, that was easy, the csv is right there. I must be a l337
hax0r now (I’m being sarcastic).

Flag: John McClane

Jump to table of contents

de Bruijn Sequences

Elf Challenge

This was another vim challenge. An elf wrote a love poem to
someone on this machine and we need to find out who it was.
Naturally, my first command was history | vim - to see what
commands were entered on the machine.

First, I can see where the file is because the elf created a
directory called ./secrets/her/ and then there was a firefox
search for love poetry right after. He also kept deleting his
history by using those set commands (sneaky). When I navigated to
the poem, the name wasn’t there (obviously, that would be way too
easy), but there is a way to see what commands were used recently
on vim. All you have to do is press the up key and you can see
the previous commands.

As you can see, he replaced “Elinore” with “NEVERMORE” on the
last line. We got our answer.

Flag

This challenge required you to unlock a door and speak to someone
in the room to get the flag. They give you 4 shapes and you need
to enter them in a specific order to unlock the door.

One of the elves hinted that there is something called a de
Bruijn sequence which can help you brute force something
strategically. I used this website and set both the k and n
values to 4 (since we have 4 shapes and the pin is 4 characters
long) and used the table to work through each sequence
accordingly until I unlocked the door.

http://www.hakank.org/comb/debruijn.cgi?k=4&n=4&submit=Ok

Flag: Welcome unprepared speaker!

Jump to table of contents

Data Repo Analysis

Elf Challenge

In this one, the elf needed to upload their report to a Samba
server and forgot their password. I needed to look through the
terminal to find out what that password was. There was a hint
left that basically told me how to find it. It turns out that
you can see commands typed in that are associated with certain
system processes. The way to do this is with the ps aux | more

https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps
https://blog.rackspace.com/passwords-on-the-command-line-visible-to-ps

command. To clarify, ps aux will give you detailed information
on each process running on the machine; the more adds even more
detail to the output.

As you can see, the manager uploaded a file by using
“directreindeerflatterystable” as the password. Looks like we got
it, let’s try it.

Nice! To clarify the command above, the -U parameter is for the
username and the -c parameter is what command you wanted to run
on the server. In this case, I used the “put” command to put the
file on the server.

Flag

The purpose of this challenge was to find the password to unzip
a file on Santa’s github. One of the elves mentioned a tool
called truffleHog which will search through git repositories for

https://github.com/dxa4481/truffleHog

secrets by looking through the commit history and branches. I
installed this on to my Kali box and ran the tool.

I added the --entropy=True to the command because the elf
mentioned that it would be a good idea to use that. You can see
that truffleHog retrieved RSA private keys from the repository
(amongst other goodies).

I found the commit I was looking for after some scrolling and it
appears that we found the flag.

Flag: Yippee-ki-yay

Jump to table of contents

AD Privilege Discovery

Elf Challenge

The elf is having trouble turning on to the server and her
normal curl commands aren’t working. Her brother put some weird
configuration on the server and she can’t figure it out. I took
a look at the /etc/nginx.conf file and sure enough, the server is
configured to use http2.

This isn’t a big issue though, curl can deal with http2, we just
need special parameters to make it work.

The parameter needed was --http2-prior-knowledge. The webpage
gives instructions on how to turn the server on.

I used “curl –http2-prior-knowledge POST -d “status=on”
http://localhost:8080/” and got on to the server.

Flag

This challenge requires you to find a reliable path from a
Kerberoastable user to the Domain Admins group by using the data
set contained in the Slingshot Linux image that is provided. I
had trouble powering up the VM, but it turns out that I just
needed to change the VM to a 64-bit image to make it work. One
of the elves gave me information about bloodhound which maps out
an AD environment for you. Once I turned on the VM, there was a
bloodhound shortcut already on the desktop so I opened it.

http://localhost:8080/
https://github.com/BloodHoundAD/BloodHound

Lucky for us, there’s already an existing query that will search
for paths from domain admins to Kerberoastable users. Once I put
that in, I can look for the path needed to get the flag.

It was noted in the challenge to avoid any paths that use RDP,
which narrowed down our results pretty quickly.

Looks like Leanne was our winner.

Flag: LDUBEJ00320@AD.KRINGLECASTLE.COM

Jump to table of contents

Badge Manipulation

Elf Challenge

Pepper said that she had been a victim of password spraying,
which is an attack where the hacker attempts to match multiple
usernames to one password to try and get on to the system. Pepper
had a log file she wanted me to look over so I could find whose
account was compromised. She also mentioned that it was an evtx
dump which can be difficult to read, but she has a python script
that will make it XML so it’s easier on the eyes. The XML file
also has quotes in it which is a pain for me when I’m trying to
use grep to search for things so I used the sed command below to
make a new log file that without quotes in it so it would be
easier to grep.

I would be lying if I said I didn’t spend a long time on this;
I’m not used to these types of logs and my grep skills are
subpar as is, so I was definitely struggling. I didn’t even know
what I was looking for at first, so I looked up how to find
password spraying in a evtx log file. This gave me some more
insight, specifically:

1. TargetUserName – this is the target user that we’re looking
for

2. Status – this is a failure code that will give you an idea
on why the login attempt failed

3. SubStatus – this gives you a more specific failure code
4. IpAddress – the IP address that the connection was coming

from

https://www.ziemba.ninja/?p=66
https://www.ziemba.ninja/?p=66

With this new information, I tried this command:

To break down this monstrosity:

cat newlog.txt – displays the results of the log file

| - those are called pipe commands, these allow you to run
multiple commands at once

grep -n -e “Status>0xc000006” -e “SubStatus>0x000006a” -e
“IpAddress>172.31.254.101 -e “TargetUserName>” - this one seems
like a lot, but is pretty self explanatory.
The -n parameter allows you to see the line numbers of where
your results are in the text file (I was using those as a
reference in case if I wanted to look at that specific event as
a whole).
The -e parameter allows you to look for a specific string, so my
first one was the “Status” that was looking for the status code
that shows that there was a failure due to a bad username or
password at login, the “SubStatus” was looking for the status
code that show that there was a failure specifically due to a
bad password and good username.
“IpAddress” was searching for the source IP address the request
(I found this by combing through the log file and seeing that
this IP address had some of the most requests, so I figured
something weird was going on), and the “TargetUserName” was just
looking for any targets associated with the above parameters.

grep -v “TargetUserName>HealthMail”
grep -v “TargetUserName>WIN” - the -v parameter will tell grep to
exclude all of the results with this specific pattern. I added
HealthMail and WIN because they were the beginning of some

service name accounts that would clog up my results, so I didn’t
want them in my output.

The above command displayed a lot of usernames and I honestly
wasn’t sure how to filter them further, so I totally guessed on
this one. I tried wunorse.openslae and it didn’t work, but
minty.candycane did so...yay? I really got lucky on this one
which is why I feel like it was karma for the upcoming SQL
injection objective to be the worst and most painful challenge
for me.

Before I get into the pain, I’ll give some context on how this
challenge was laid out. The purpose of this challenge was to
bypass the authentication mechanism associated with the room near
Pepper Minstix (one of the elves). I was given a sample badge
that showed me that the employees use QR codes to scan in.

The badge scanner looks like this:

I tried the sample badge on it, but it said that it only accepts
PNG files (boo!), so I just saved it as a PNG instead. The
scanner displayed the error “Authorized user account has been
disabled!" Nice one Alabaster. Pepper did mention that the
scanner uses SQL so before even attempting to inject anything, I
had to throw an exception to see how the commands were laid out.
I generated a QR code with some dummy text (I’m pretty sure you
can put literally anything and it’ll throw the exception) and got
this:

“EXCEPTION AT (LINE 96 "user_info = query("SELECT
first_name,last_name,enabled FROM employees WHERE authorized = 1
AND uid = '{}' LIMIT 1".format(uid))"): (1064, u"You have an error
in your SQL syntax; check the manual that corresponds to your
MariaDB server version for the right syntax to use near '' LIMIT
1' at line 1”
So this is a MariaDB server and the command should look something
like:

user_info = query("SELECT first_name,last_name,enabled FROM
employees WHERE authorized = 1 AND uid = '{}' LIMIT
1”.format(uid))")

I’m pretty trash at SQL, but even my sloth self was able to
deduce that the injection should be in the brackets after the
uid. The question was, what goes in there? What constitutes as a
valid user? It looks like the user needs to be both authorized
and enabled for the badge to scan. I definitely needed some help
so I used this link and got some pointers from the discord
channel to come up with this:

user_info = query("SELECT first_name,last_name,enabled FROM
employees WHERE authorized = 1 AND uid = '' 1' or '1'='1' and
enabled=1 # LIMIT 1 ".format(uid))")

https://www.the-qrcode-generator.com/
https://security.stackexchange.com/questions/200244/sql-injection-mariadb

There was so much pain, so much trial and error, but finally, I
was in. So many hours burnt on this, but at least I learned
something new.

Flag: It’s an access control number that flashes on the screen
after you scan in, but I’m not sure if it’s the same for
everyone or different.

Jump to table of contents

HR Incident Response

Elf Challenge

As you can see, Sparkle forgot her password, but it’s located in
one of her commits in this git repository. First, I had to look
at the commits themselves and this was done by using the git log
command.

After scrolling, it seems that I found the commit I needed since
the comment says “removed username/password from config.js.” Now,
I can use the git show command which allows me to see the
differences for a specific git commit.

Sure enough, in the red, we found our answer:
twinkletwinkletwinkle.

Flag

The purpose of this challenge was to use csv injection to get
information off of a word document file located on a web server.
One of the elves told me that there was a talk at KringleCon
about csv injection, so I went to check that out and get some
more insight. The concept itself seems pretty straightforward, I
just had to figure out how I was going to get a hold of that
file. The website where we upload the file looks like this.

https://www.youtube.com/watch?v=Z3qpcKVv2Bg
https://www.youtube.com/watch?v=Z3qpcKVv2Bg

I also knew that the file we wanted was located on
C:\candidate_evaluation.docx because that was explained in the
objective.

I wanted to get a map of how the site was laid out to get some
clues from there. Dirb is a great tool for doing this.

There are two pages, although the /static/ directory holds the js
files, so /public/ was the only one I was interested in. This
does give a 301 code which means it’s being redirected, which
probably means that we’ll get a 404 error and won’t be able to
load the page.

Sure enough, we got an error. This may seem like a bad thing, but
if I wanted to copy the file to a directory where I could access
it (which is what I ended up doing), this would be the directory
to do that in. Before trying that, I still was curious about my
reverse shell option. I’ve only ever done these with a system
that is on my network, so that’s a lot easier, but never on a
site located elsewhere. I wanted to find out what the IP address
of the web page was to do some more digging. I opted to use
Wireshark to sniff the traffic when I uploaded a csv file.

Based on this snippet, it seems that 35.229.118.54 should be our
address. I checked multiple IP address lookup websites to double
check and confirm this.

Just out of curiosity, I wanted to try entering the address in
my web page to see what would happen.

Bad gateway and an nginx server, interesting. So there is
something there! Let’s try nmap to see what happens.

To clarify this command:

-sV - prints out the versions of the services on each port
-p - specifies what port numbers I want to scan (default only
scans the most popular ones)
-T4 - this is the timing template parameter, which ranges from
(0-5) and will specify how aggressively the nmap scan will be
-Pn - treat this host as online and skip the host discovery (I
did my first scan without this parameter and it said the host
was down, but recommended I try this parameter to get more
answers)

So the host is up, but all of the ports are filtered and seem
pretty locked down. It seems that our best bet is to indeed copy
that file to the /public/ directory and extract it that way. This
is as simple as executing a copy command to put it in a place
where we can reach it. I found the easiest way to make this work
was to not create an Excel or LibreOffice Calc file, but make
the csv file in a text editor and save it as a csv file because
the other programs were messing with my injection payload.

Note: I knew that the file was on
C:\careerportal\resources\public\ because it’s listed on the 404
error on the webpage.

Eureka, we got the file with the flag in it.

Flag: Fancy Beaver

Jump to table of contents

Conclusion

This is easily the longest write up I have ever made (of the few
write ups I’ve done so far) and I hope it was informative and
relatively easy to understand. Make sure to tune in every year
around Christmas time so you can participate in the Holiday Hack
Challenge as well!

